"Auxiliary Equipment Design for Natural Resins"

Dana Darley
Extrusion Auxiliary Services, Inc.
Dacula, GA
(678) 714-5218; fax (678) 714-5264
dana@extrusionauxiliary.com
www.extrusionauxiliary.com

Challenges for Melt Processing

- Low melt viscosity
- Thermal sensitivity
- Sensitivity to shear
- Corrosive
- Low melt strength
- Raw materials expensive and limited supply

Types of Screen Changers

- Manual Screen Changer
- Hydraulic Screen Changer
- Dual or Single Piston
- Continuous Belt/Ribbon Type
- Multi-Segment Rotary Disc

Basic Design Considerations

- Stainless steel construction
- High open area to minimize shear
- Streamlined passages
- Low residence time
- Proper sealing against leaks
- Continuous operation where justified

Manual Screen Changer - Strengths

- Sizes: 30 mm to 150 mm
- Low capital costs
- Low operating costs
- Streamlined flow paths
- Minimum residence time
- Small in size

Manual Screen Changers - Weaknesses

- Process Interruption
- Line shutdown
- Air entrapment
- Limited open area
- Seal leakage/replacement

Hydraulic Screen Changer - Strengths

- Sizes: 70 mm to 380 mm
- Low operating costs
- Low capital costs
- Streamlined flow paths
- Minimal residence time
- Industry acceptance

Hydraulic Screen Changer - Weaknesses

- Process interruptions
- Air entrapment
- Heated standby screen
- Limited open area
- Complicated hydraulics
- Seal leakage/replacement

Belt Type Screen Changer - Strengths

- Constant differential pressure
- Streamlined flow paths
- Minimal residence time
- Low operator intervention

Belt Type Screen Changer - Weaknesses

- Limited size ranges
- Capital costs
- Operating costs
- Sophisticated controls
- High contamination
- Temperature dependent sealing
- Head/differential pressure limitation
- Limited applications with Natural Resins

Piston Screen Changer - Strengths

- Sizes: 30 to 450 mm
- Continuous filtration
- Sealless design
- High open area
- Uses round screens
- Low capital & operating costs
- Variety of special applications

Piston Screen Changer - Weaknesses

- Cost relative to hydraulic
- Some pressure variations
- Increased residence time
- Operator skill level
- Size and installation

Rotary Screen Changer - Strengths

- Sizes: 30 mm to 250 mm
- Very constant pressure
- Streamlined flow paths
- Minimum residence time
- High automation
- Low operator intervention

Rotary Screen Changer - Weaknesses

- Too loose leakage
- Too tight lockup/galling
- High capital cost
- Sophisticated controls
- High differential pressure
- Pressure/viscosity dependent bolt torque

Application Factors

- Required level of filtration 80 to 125 mesh
- Screen change frequency/on stream life
- Effect of pressure variation on process
- Frequency of normal line shutdown
- Material waste & downtime during start-up
- Overall process pressures

Understanding "Mesh" Sizes

Square Mesh

Mesh	Wire dia	% Open area	Opening	Micron Retention
20	0.014	46%	0.035	900
20	0.02	36	0.029	750
100	0.004	38	0.0062	160
100	0.0045	31	0.0055	140
150	0.0026	34	0.0041	91
200	0.0021	29	0.0029	69

Gear Pumps - Basic Design Considerations

- Stainless steel construction
- External purge of lubrication material
- Water cooled housing
- Tight rotational clearances
- Lower rotational speeds
- Streamlined flow passages

Gear Pump Systems - Strengths

- Controls surging
- Reduces backpressure & increases output
- Volumetrically accurate metering

Gear Pump Systems - Weaknesses

- High cost system
- Relatively maintenance intensive
- Difficult to install
- Machine direction only, no traverse gauge control

What is a Gear Pump?

Tight Rotational Clearances

Bearing Lubrication

Lubrication Return Grooves

External Purge for Shear Sensitive

Courtesy of Kreyenborg GmbH

Benefits of the Pump in the Extrusion Process

- Elimination of surging and and surge related defects in extrudate quality, resulting in higher yield per pound
- Faster start-ups and repeatable linear output flow
- Ability to run higher concentrations of regrind and off-spec materials
- Multiple profiles from the same extruder
- Generation of pressure needed by downstream devices

Pressure Before and After Pump Installation

System Components

- Gear Pump
- Variable speed drive package
 - AC or DC...1 HP/100PPH
- Support cart/frame
- Process adapters
- Control system
 - Discrete instruments, PLC or combination

Control Packages – Line, cont.

Storage and Conveying

- Most BioPolymers are supplied in gaylord boxes or super sacks
- Soon, resins will be shipped by bulk truck and railcar
- Virgin pellets can be stored in conventional silos, where storage of amorphous regrind requires special consideration

Storage & Conveying, cont.

- Virgin pellets can be dilute phase conveyed either by pressure and/or vacuum
- Lower conveying velocity
 (5000 feet/minute) and
 "scored" tubing to minimize
 degradation

Crystallizing

- Crystallization is required to change resin from amorphous to crystalline state
- Temperature must be raised above Glass Transition temperature, while gentle agitation avoids agglomeration

Crystallizing System

Courtesy of Universal Dynamics Corporation

Drying

- Process drying is the most critical stage of material preparation
- Must remove moisture from resin to 200 PPM or less
- Requires dehumidifying hopper drying with low temperature options to avoid over heating material

PET verses BioPolymers

- Simple changes allow BioPolymers to run in PET systems
- Proper drying temperature settings are required
- All traces of PET must be removed to prevent contamination coming through un-melted
- BioPolymers, such as PLA melt at approximately 200°F -lower than PET
- Styrene purge is recommended in both directions of change

References

- NatureWorks PLA Processing Guides for Film and Sheet
- PLA Solutions for Sheet Extrusion
 - Bob Crawford, Universal Dynamics, Inc

Extrusion
Auxiliary Services

Your Extrusion Process & Equipment Experts